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Preferential Exhibition of Smectic A Phase through Intramolecular
Hydrogen Bonding in 2-Amino-5-phenyltropone Liquid Crystals
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Two new types of liquid crystals, 5-(4-alkanoylaminophenyl)-2-alkanoylamino-
tropones and 5-(4-alkanoylaminophenyl)-2-alkanoyloxytropones, were prepared. The
former showed the smectic A phase and the latter did the smectic A and C phases. The
1H NMR spectra indicated the former to be in intramolecularly hydrogen-bonded L-
shaped alignment.

Recently, we have reported the synthesis of new liquid crystals with a 5-aminotropolone core, 2-(4-
alkoxybenzoyloxy)-5-alkylaminotropones (D)D) and 5-alkoxy-2-(4-alkylaminobenzoyloxy)tropones (2),2) which
showed a smectic C phase. The corresponding benzenoids of the latter were non-mesogenic. The variable-
temperature IR spectra of 1 and 2 indicated the intermolecular hydrogen bonding between the NH and tropone
carbonyl groups, which assisted the exclusive exhibition of the smectic C phase.

On the other hand, the intramolecular hydrogen bonding also assisted some systems to be mesogenic as
has been observed in 3,4,5-U’ialkoxybenzaldehyde—Z',4'~dinitrophenylhydrazone,3) substituted Schiff's bases,)
azo compounds,s) and 3,4,4"-trisubstituted terphenyls.6)

In this paper, we report the synthesis of two new types of liquid crystals, 5-(4-alkanoylaminophenyl)-2-
alkanoylaminotropones (3) and 5-(4-alkanoylaminophenyl)-2-alkanoyloxytropones (4) and their thermotropic

properties.
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Compounds 3 and 4 were prepared by acylation of 5-(4-aminophenyl)-2-aminotropone (5) and 5-(4-
aminophenyl)tropolone (6).7) The phase transition temperatures were determined using a differential scanning
calorimeter (DSC), and the mesomorphic phases were observed by a polarizing microscope equipped with a hot
stage. The results are summarized in Tables 1 and 2. Compounds 3 showed the smectic A phase, whereas
compounds 4 the smectic A phase, and the smectic C phase appeared in 4 with longer alkyl chains. Compounds

3 showed lower isotropic transition temperatures and somewhat higher melting points than compounds 4.

Table 1. Transition temperatures and enthalpy changes for 3%

R Transition temp / ° C ( AH/ kJ-mol! )
133 (6.4) 150 (36.1) 157 (1.3)
a C11H23 K= et |~ =SA: >1so
132 (6.5) 141 (37.2) 155 (8.0)
148 (37.2) 155 (6.3)
b C13H27 K =< ot SA: >1so
140 (36.3) 155 (8.3)
130 (1.4) K 142 (41.5) 154 (7.0)
C C15H31 K - =1 - SA<__.__:ISO
133 (38.9) 153 (7.1)

a) K: Crystals, Iso: Isotropic Liquid, S, and S¢: Smectic A and C Phases.

Table 2. Transition temperatures and enthalpy changes for 42

R Transition temp / © C ( AH/ kJ-mol!)

98 (19.6) 148 159 178 (8.4)

a CpHys K3 K, > Sc= > S A= > Iso

134 175 (8.5)

140 (38.0) 155 (0.3) 169 (10.9)

b Ci3Hyy K Sc = — Sa—= —Iso
129 (35.4) 145 164 (9.9)
137 (44.9) 152 175(9.6)

¢ CisHy K Sc= — Sp= Iso
132 (38.1) 162 (6.6)

a) K: Crystals, Iso: Isotropic Liquid, S and S¢: Smectic A and C Phases.

The mesomorphic properties of 3 and 4 are due to the difference of the heteroatom at C-2 of the tropone
nucleus. The 1H NMR spectra of 4 showed a [1,9] sigmatropys) in CDCI3, while those of 3 did not. The 1521
NMR spectra of 3 displayed an olefinic proton around 3 9.1 as a doublet (/=11 Hz), which was assigned to H-3.
This low field shift was caused by the anisotropy of the adjacent amide C=0 group, which is located at the outer
side of the molecule because of the intramolecular hydrogen bonding between the tropone C=0O and the NH
groups. The two singlet signals due to the NH of 3b appeared at 8 7.29 and 9.37. The latter signal was assigned
to the intramolecularly hydrogen-bonded NH proton. In the D20 exchanging experiment of 3b, these two NH
protons disappeared and the doublet at 8 9.06 (J=10.6 Hz) remained unchanged.
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Fig. 1. lH NMR Spectrum (CDCI3, 270 MHz) of 3b and molecular packing model for 3.

Previously, we postulated a molecular arrangement model to explain the exclusive exhibition of the
smectic C phase for 1 and 2, considering the intermolecular hydrogen bonding.1-2) Since 4 has the similar
chromophore to 1, it is possible for 4 to make an intermolecular hydrogen bonding. However, since 4 with
shorter alkyl chains showed the smectic A phase, and 4 with longer alkyl chains the smectic C phase, the situation
of 4 was not the same as those of 1 and 2. Dissimilarity is explained in terms of the effect of the alkyl chain
length on the appearance of a smectic phase; the longer alkyl chain promoted the appearance of a smectic C
phasc.9) ’

It is evident from 1H NMR spectrum of 3 that the NH and tropone C=0 groups made an intramolecular
hydrogen bonding in CDCI3 solution. Even in the liquid crystalline states, it is speculated that the intramolecular
hydrogen bonding is operative to form an L-shape species.lo) The L-shape molecules are likely to be packed as
shown in Figure 1 to reduce the molecular volume. The intermolecular hydrogen bonding between the amide
groups on the phenyl group would assist the arrangement of molecules. This molecular arrangement would
induce the smectic A phase.11) The intramolecular hydrogen bonding can reduce the molecular motion to give the



1770 Chemistry Letters, 1992

rigidity, whereas the [1,9] sigmatropic system can keep the rod-shape of the molecule. The heteroatom on the
seven-membered ring thus controlled the molecular structure to affect the liquid property.
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